The study of continuous selections begins with the paper of Michael [37] and it is an active area of research in general topology. Michael proved that any lower semicontinuous multifunction $F : X \rightarrow Y$ with closed convex values admits a continuous selection, where X is a paracompact topological space and Y is a Banach space.

For continuous multifunctions which are defined on the segment $[0, 1]$ with compact values in Euclidean space E^n the existence of a continuous selection was proved by Filippov [12] for multifunctions satisfying the Lipschitz condition. Hermes [17] proved existence of a continuous selection for multifunctions with bounded variation. Several authors obtained a continuous selection theorem for a multifunction with non convex values in a Banach space of functions (e.g. Fryszkowski [14]).

7.1 Convex-valued Selection Theorem

This section deals with the convex-valued selection theorem. For the first time it was proved by Michael. What we give here is a version published in [45].

Paracompactness of the domain as a necessary condition

THEOREM 7.1. Let X be a topological space such that each lower semicontinuous map from X into any Banach space with closed convex values admits a continuous single-valued selection. Then every open covering of X admits a locally finite open refinement.

Proof. The proof is divided into two parts:

1. **Construction:**

Let
(1) \(\gamma = \{G_{\alpha}\}_{\alpha \in A} \) be an open covering of the space \(X \);

(2) \(B = l_1(A) \) be the Banach space of all summable functions \(s : A \rightarrow \mathbb{R} \) over the index set \(A \); and

(3) For every \(x \in X \), let
\[
F(x) = \{s \in B \mid s \geq 0, \|s\| = 1 \text{ and } s(\alpha) = 0, \text{ whenever } x \not\in G_{\alpha}\}.
\]

We claim that then:

(a) \(F(x) \) is a nonempty convex closed subset of the Banach space \(B \), for every \(x \in X \); and

(b) The map \(F : X \rightarrow B \) is lower semicontinuous, i.e. for every \(x \in X \), every \(s \in F(x) \) and every \(\epsilon > 0 \), the pre-image \(F^{-1}(D(s, \epsilon)) \) contains an open neighbourhood of \(x \).

It follows from the hypothesis of the theorem that there exists a continuous selection for \(F \), say \(f \). Let:

(4) \(e_{\alpha} = [f(x)](\alpha) \);

(5) \(e(x) = \sup\{e_{\alpha}(x) \mid \alpha \in A\} \); and

(6) \(V_{\alpha} = \{x \in X \mid e_{\alpha}(x) > \frac{e(x)}{2}\} \).

We claim that then:

(d) \(e \) is a continuous positive function;

(e) If \(e_{\alpha}(x) > 0 \) then \(x \in G_{\alpha} \) for all \(\alpha \in A \);

(f) \(V_{\alpha} \subset G_{\alpha} \), for all \(\alpha \in A \);

(g) \(\{V_{\alpha}\} \) is a locally finite family of open subsets of the space \(X \); and

(h) The family \(\{V_{\alpha}\}_{\alpha \in A} \), is a cover of the space \(X \).

II. Verification:

(a) Let \(A(x) = \{\alpha \in A \mid x \in G_{\alpha}\} \). \(F(x) \) is the standard basic simplex in the Banach space \(l_1(A(x)) \),
(b) For \(x \in X, s \in F(x) \) and \(\epsilon > 0 \), let us first consider the case when
\[
\text{supp}(s) = \{ \alpha \in A \mid s(\alpha) > 0 \} = \{ \alpha_1, \alpha_2, \ldots, \alpha_N \}
\]
is a finite subset of \(A \). Then due to the construction of the mapping \(F \), the point \(s \) belongs to \(F(x') \), for every \(x' \) from the neighbourhood \(G(x) = \cap_{i \in \mathbb{N}} G_{\alpha_i} \) of the point \(x \). Hence
\[
G(x) \subset F^{-1}(\{s\}) \subset F^{-1}(D(s, \epsilon)),
\]
i.e. \(F \) is lower semicontinuous at \(x \). The second case of countable \(\text{supp}(s) \) follows from the first case and from the obvious fact that in the standard simplex of the space \(l_1 \) the subset of points with finite supports constitutes a dense subset.

(c) The function \(e_\alpha : X \to [0, 1] \) is a composition of the continuous selection \(f \) and the \(\alpha \)-th coordinate projection \(p_\alpha \) of the entire Banach space \(l_1(A) \). The equality \(\sum_{\alpha \in A} e_\alpha(x) = 1 \) follows from (4) and therefore \(f(x) \in F(x) \).

(d) For an arbitrary \(x \in X \), we pick an index \(\beta = \beta(x) \) such that \(e_\beta(x) > 0 \). Then for some finite set of indices \(\Gamma(x) \subset A \) we have that
\[
1 - \sum_{\alpha \in \Gamma(x)} e_\alpha(x) < \frac{e_\beta(x)}{2}.
\]
On the left side is the sum of a finite number of continuous functions. Hence, the inequality
\[
\sum_{\alpha \notin \Gamma(x)} e_\alpha(z) = 1 - \sum_{\alpha \in \Gamma(x)} e_\alpha(z) < \frac{e_\beta(z)}{2}
\]
holds for every \(z \) from some open neighbourhood \(W(x) \) of the point \(x \). But then \(e_\gamma(x) < e_\beta(z) \), for all \(\gamma \notin \Gamma(x) \). So we have proved that the function \(e(.) \) is in fact the maximum of a finite number of continuous functions in the neighbourhood \(W(x) \). Therefore \(e(.) \) is continuous. Finally, positivity of \(e(.) \) follows from (c).

(e) If \(x \notin G_\alpha \) then for every \(s \in F(x) \), we have that \(s(\alpha) = 0 \), (see (3)). So by \(f(x) \in F(x) \), we get \(e_\alpha(x) = |f(x)|(\alpha) = 0 \).

(f) This follows from
\[
e_\alpha(x) > \frac{e(x)}{2} \geq \frac{e_\beta(x)}{2},
\]
from (e), and from \(e_\beta(x) > 0 \) (see the proof of (d)).

(g) It follows from (6) and by continuity of functions \(e_\alpha \) and \(e \) that \(V_\alpha \) is an open set. As in the proof of (d) we find for an arbitrary \(x \), some finite set \(\Gamma(x) \subset A \) and some neighbourhood
Then the mapping \(\epsilon > \) some semicontinuous mapping. Let \(f \) II. Verification

We claim that then:

I. Construction

\[
\epsilon > \frac{e(z)}{2} > 1 - \sum_{\alpha \in \Gamma(x)} e_\alpha(z) = \sum_{\alpha \in \Gamma(x)} e_\alpha(z).
\]

Hence \(e_\gamma(z) > e_\alpha(z) \), for every \(\alpha \in \Gamma(x) \), i.e. \(\gamma \in \Gamma(x) \).

(h) It is followed by the contradiction: if \(x \notin \bigcup V_\alpha \), \(\alpha \in A \), then \(e_\alpha(x) \leq \frac{e(x)}{2} \) and

\[
0 < e(x) = \text{supp}(e_\alpha(x) \mid \alpha \in A) \leq \frac{e(x)}{2}.
\]

In what follows we will need the following two propositions:

Proposition 7.2. Let \(X \) be a topological space, \(Y \) be a metric space. Let \(F : X \rightarrow (Y, \rho) \) be a lower semicontinuous mapping. Let \(f : X \rightarrow Y \) be a single-valued continuous mapping such that for some \(\epsilon > 0 \), the intersection of \(F(x) \) with the open \(\epsilon \)-balls \(D(f(x), \epsilon) \) are nonempty, for all \(x \in X \). Then the mapping \(G : X \rightarrow Y \), defined by \(G(x) = F(x) \cap D(f(x), \epsilon) \), is lower semicontinuous.

Proof. In two steps:

I. Construction: Let

1. \(U \) be open in \(Y \) and \(G^{-1}(U) \) nonempty;
2. \(x \in G^{-1}(U) \) and \(y \in G(x) \cap U = F(x) \cap D(f(x), \epsilon) \cap U; \)
3. \(\epsilon_1 > 0 \) be such that the closed ball \(\text{Cl}(y, \epsilon_1) \) is contained in the open set \(D(f(x), \epsilon) \cap U; \) and
4. \(D(f(x), \delta) \) be a small open ball centered at \(f(x) \); more precisely, let \(0 < \delta < \epsilon - (\epsilon_1 + \rho(f(x), y)). \)

We claim that then:

a. If \(z \in D(f(x), \delta) \) then \(\text{Cl}(y, \epsilon_1) \subset D(z, \epsilon); \)

b. \(f^{-1}(D(f(x), \delta)) \cap F^{-1}(D(y, \epsilon_1)) \subset G^{-1}(U); \)

c. The intersection from (b) is a nonempty open neighbourhood of \(x; \) and

(d) \(G^{-1}(U) \) is open in \(X \).

II. Verification:

a. Clearly, for every \(y' \in Y \), \(\rho(y', z) \leq \rho(y', y) + \rho(y, f(x)) + \rho(f(x), z). \) So, if \(\rho(y', y) \leq \epsilon_1 \) and \(\rho(f(x), z) < \delta < \epsilon - \epsilon_1 - \rho(f(x), y) \)

then \(\rho(y', z) < \epsilon. \)
(b) If \(x' \in f^{-1}(D(f(x), \delta)) \) then the point \(z = f(x') \) lies in the open ball \(D(f(x), \delta) \) and (see (a)) \(D(y, \varepsilon_1) \subset D(z, \varepsilon) \). If, in addition, \(x' \in F^{-1}(D(y, \varepsilon_1)) \) then the set \(F(x') \) intersects the ball \(D(y, \varepsilon_1) \subset U \). So there exists \(y' \):
\[
y' \in F(x') \cap D(y, \varepsilon_1) \subset F(x') \cap D(f(x'), \varepsilon) \cap U
\]
i.e. \(x' \in G^{-1}(U) \).

(c) It follows from the continuity of \(f \) and lower semicontinuity of \(F \) at the point \(x \).

(d) It follows from (b) and (c) because \(x \) is an arbitrary point of \(G^{-1}(U) \).

□

Proposition 7.3. Let \(\{e_\alpha\}_{\alpha \in A} \) be a locally finite partition of unity on a topological space \(X \) and let \(\{y_\alpha\}_{\alpha \in A} \) be arbitrary points from a topological vector space \(Y \). Then the map \(f : X \to Y \) defined by
\[
f(x) = \sum_{\alpha \in A} e_\alpha(x)y_\alpha
\]
is continuous.

Proof. It suffices to observe that for a fixed \(x \in X \), the mapping \(f \) is a sum of a finite number of continuous mappings \(f_\alpha(x) = e_\alpha(x)y_\alpha \) in some suitable neighbourhood of this point. □

Here is the Repovs-Semenov’s proof of the convex-valued Selection Theorem:

THEOREM 7.4. Let \(X \) be a paracompact space, \(B \) a Banach space and \(F : X \rightharpoonup B \) a lower semicontinuous map with nonempty closed convex values. Then \(F \) admits a continuous single-valued selection.

We obtain theorem 7.4 as a corollary of the following two propositions. The first one establishes the existence of some \(\varepsilon \)-selection. The second one provides the existence of a uniformly convergent sequence \(\{f_n\} \) of \(\varepsilon_n \)-selections of the given multi-valued mapping.

Definition 7.5. Let \(F : X \rightharpoonup Y \) be a multi-valued mapping of a topological space \(X \) into a metric space \((Y, \rho) \). Then a single-valued mapping \(f : X \to Y \) is said to be an \(\varepsilon \)-selection of \(F \) if
\[
dist(f(x), F(x)) < \varepsilon,
\]
for all \(x \in X \), where
\[
dist(f(x), F(x)) = \inf\{\rho(f(x), y) \mid y \in F(x)\}.
\]

The fact that \(f \) is an \(\varepsilon \)-selection of \(F \) geometrically means that every open ball \(D(f(x), \varepsilon) \) intersects the set \(F(x) \), for every \(x \in X \).
Proposition 7.6. Let X be a paracompact space, B a normed space and $F : X \rightharpoonup B$ a convex-valued lower semicontinuous map. Then for every $\epsilon > 0$ exists a continuous single-valued ϵ-selection $f_\epsilon : X \to B$ of the map F.

Proposition 7.7. Let X be a paracompact space, B a normed space and $F : X \rightharpoonup B$ a convex-valued lower semicontinuous map. Then for every sequence $\{\epsilon_n\}_{n \in \mathbb{N}}$ of positive numbers, converging to zero, there exists a uniformly Cauchy sequence $\{f_n\}$ of continuous single-valued ϵ_n-selections $f_n : X \to B$ of the map F.

Proof of Theorem 7.4. Choose a converging sequence $\epsilon_n \to 0$, $\epsilon_n > 0$ and let $\{f_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence of continuous single-valued ϵ_n-selections $f_n : X \to B$ of the map F constructed in Proposition 7.7.

Pick $\epsilon > 0$ and $N \in \mathbb{N}$ such that $\epsilon_n < \epsilon/3$ and $\|f_n(x) - f_{n+p}(x)\| < \epsilon/3$, for all $n > N$, $p \in \mathbb{N}$, and $x \in X$. For each $x \in X$ and for each $n \in \mathbb{N}$, we can find an element $z_n(x) \in F(x)$ such that

$$\|z_n(x) - f_n(x)\| < \epsilon_n.$$

Hence

$$\|z_n(x) - z_{n+p}(x)\| \leq \|z_n(x) - f_n(x)\| + \|f_n(x) - f_{n+p}(x)\| + \|f_{n+p}(x) - z_{n+p}(x)\| < \epsilon_n + \frac{\epsilon}{3} + \epsilon_{n+p} < \epsilon.$$

Therefore $\{z_n(x)\}_{n \in \mathbb{N}}$ is a Cauchy sequence in the complete subspace $F(x) \subset B$ of the metric space B and there exists

$$\lim_{n \to \infty} z_n(x) = z(x) \in F(x).$$

Finally, the equality

$$\lim_{n \to \infty} \|z_n(x) - f_n(x)\| = 0$$

implies that there exists

$$\lim_{n \to \infty} f_n(x) = f(x),$$

and that $z(x) = f(x)$. Hence $f(x) \in F(x)$ and the map f is continuous as the point-wise limit of a uniformly Cauchy sequence $\{f_n\}_{n \in \mathbb{N}}$ of continuous functions. \hfill \Box

Proof of proposition 7.6. In two steps:

I. Construction: For a given $\epsilon > 0$ and for every $y \in B$ let:

1. $D(y, \epsilon) = \{z \in B \mid \|z - y\| < \epsilon\}$ be an open ball in B with the radius ϵ centered at y; and

2. $U(y, \epsilon) = F^{-1}(D(y, \epsilon)) = \{x \in X \mid F(x) \cap D(y, \epsilon) \neq \emptyset\}$.

We claim that then:

(a) $\{U(y, \epsilon)\}_{y \in B}$, is an open covering of the space X; and
(b) There exists a locally finite partition of unity \(\{e_\alpha\}_{\alpha \in A}\) inscribed into the covering \(\{U(y, \epsilon)\}_{y \in B}\). Let:

(3) \(y_\alpha\) be an arbitrary element of \(B\) such that \(\text{supp}(e_\alpha) \subset U(y_\alpha, \epsilon)\); and

(4) Let \(f_\epsilon(x) = \sum_{\alpha \in A} e_\alpha(x)y_\alpha\).

We claim that then:

(c) \(f_\epsilon\) is a well-defined continuous mapping; and

(d) \(\text{dist}(f_\epsilon(x), F(x)) < \epsilon\), for all \(x \in X\).

II. Verification:

(a) It follows from the definition of the lower semicontinuity of the map \(F\);

(b) It follows from the paracompactness of the space \(X\);

(c) It follows from Proposition 7.3;

(d) For a given \(x \in X\), let

\[
\{\alpha \in A \mid x \in \text{supp}(e_\alpha)\} = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}.
\]

Then \(x \in \text{supp}(e_\alpha) \subset U(y_\alpha, \epsilon)\), i.e. \(F(x) \cap F(y_\alpha, \epsilon) \neq \emptyset\). Hence \(\|z_i - y_\alpha\| < \epsilon\), for some \(z_i \in F(x); i \in \{1, 2, \ldots, n\}\). Let \(z = \sum_{i=1}^n e_\alpha(x)z_i\). By the convexity of the set \(F(x)\) we have \(z \in F(x)\) and by the convexity of open balls in a normed space we have

\[
\text{dist}(f_\epsilon(x), F(x)) \leq \|f_\epsilon(x) - z\| \leq \left\| \sum_{i=1}^n e_\alpha(x)(y_\alpha - z_i) \right\| \leq \sum_{i=1}^n e_\alpha(x)||y_\alpha - z_i|| \leq \epsilon \sum_{i=1}^n e_\alpha(x) = \epsilon.
\]

\(\square\)

Proof of proposition 7.7. In two steps:

I. Construction: We shall construct by induction a sequence of convex-valued lower semicontinuous mappings \(\{F_n : X \rightarrow B\}_{n \in \mathbb{N}}\) such that:

(i) \(F(x) = F_0(x) \supset F_1(x) \supset \cdots \supset F_n(x) \supset F_{n+1}(x) \supset \ldots\), for all \(x \in X\);

(ii) \(\text{diam}F_n(x) \leq 2\epsilon_n\); and
7.1 Convex-valued Selection Theorem

(iii) \(f_n \) is and \(\varepsilon_n \)-selection of the mapping \(F_{n-1} \), for every \(n \in \{1, 2, \ldots \} \).

Base of induction: We apply Proposition 7.6 for the spaces \(X \) and \(B \), the mapping \(F = F_0 \), and for the number \(\varepsilon = \varepsilon_1 \). In such a way we find a continuous \(\varepsilon_1 \)-selection \(f_1 \) of the map \(F_0 \). Let

\[
F_1(x) = F_0(x) \cap D(f_1(x), \varepsilon_1),
\]

where \(D(f_1(x), \varepsilon) \) is the open ball in \(B \) of radius \(\varepsilon_1 \), centered at the point \(f_1(x) \). We claim that then:

(a1) \(F_1(x) \) is a nonempty convex subset of \(F_0(x) \);

(b1) \(\text{diam} F_1(x) \leq 2\varepsilon_1 \); and

(c1) The mapping \(F_1 : X \rightharpoonup B \) is lower semicontinuous.

Inductive step: Suppose that the mappings \(F_1, F_2, \ldots, F_{m-1}, f_1, f_2, \ldots, f_{m-1} \) with the properties (i)-(iii) have already been constructed. We apply Proposition 7.6 for spaces \(X \) and \(B \), mapping \(F_{m-1} \) and for the number \(\varepsilon_m > 0 \) and find a continuous \(\varepsilon_m \)-selection \(f_m \) of the map \(F_{m-1} \). Let

\[
F_m(x) = F_{m-1}(x) \cap D(f_m(x), \varepsilon_m).
\]

We claim that then:

(am) \(F_m(x) \) is a nonempty convex subset of \(F_{m-1} \);

(bm) \(\text{diam} F_m(x) \leq 2\varepsilon_m \); and

(cm) The mapping \(F_m : X \rightharpoonup B \) is lower semicontinuous.

Next, we claim that then:

(d) The sequence \(\{f_n\}_{n \in \mathbb{N}} \) is a uniformly Cauchy sequence of continuous single-valued \(\varepsilon_n \)-selections \(f_n : X \to B \) of the map \(F \).

II. Verification:

(a1) Follows since \(f_1 \) is an \(\varepsilon_1 \)-selection of \(F_0 \) and because the intersection of convex sets is again a convex set;

(b1) Follows since \(F_1(x) \) is a subset of a ball of radius \(\varepsilon_1 \); and

(c1) It follows from Proposition 7.2.

(am)-(cm) can be proved similarly as (a1)-(c1).
(d) f_n is a continuous ϵ_n-selection of the mapping F_{n-1} and $F_{n-1}(x) \subset F(x)$. Hence f_n is a continuous ϵ_n-selection of F. From the inclusion $F_{n+p}(x) \subset F_n(x)$ and by condition (ii) we have that for every $n, p \in \mathbb{N}$ and $x \in X$,

$$
\|f_n(x) - f_{n+p}(x)\| \leq \text{dist}(f_n(x), F_n(x)) + \text{diam}F_n(x) + \text{dist}(f_{n+p}(x), F_{n+p}(x)) < 3\epsilon_n + \epsilon_{n+p}.
$$

Since $\epsilon_n \to 0$ we thus obtain (d).

□

The convex-valued theorem has many versions and generalizations. We cite here two of them:

THEOREM 7.8. Let X be a paracompact topological space, (Y, d) be a locally convex metric vector space and $F : X \rightrightarrows Y$ a lower semicontinuous multifunction with complete convex values. Then F has a continuous single-valued selection.

THEOREM 7.9. Let X be a paracompact topological space, (Y, d) a locally convex metric vector space and $F : X \rightrightarrows Y$ a lower semicontinuous multifunction with complete convex values. Then for every $\epsilon > 0$ and for every continuous single-valued ϵ-selection f_ϵ of F, there exists a continuous single-valued selection f of F such that

$$
d(f_\epsilon(x), f(x)) \leq \epsilon, \quad \text{for all } x \in X.
$$

7.2 Continuous selections from topological to metric spaces

In the monograph *Selections theorems and their applications* (Lecture Notes Math. 263) T. Parthasarathy wrote:

It could be nice if one could prove a selection theorem when Y is an arbitrary metric space (X being topological) - of course the assumptions on the map F as well as the sets $F(x)$ should be stronger.

As the following example shows, it is not obvious, which assumptions we should take. Even a nice multifunction with exactly two values at each x does not have necessarily a continuous selection.

Example 7.10. Let $A = [0, 2], B = [0, 4]$ be closed real intervals. Let X be a circle (a quotient space) obtained from A by identifying the points 0 and 2. Let Y be a circle obtained from B by identifying the points 0 and 4. Let us denote the identified points 0 and 2 in A by s and 0 and 4 in
7.2 Continuous selections from topological to metric spaces

We now define $F: X \rightharpoonup Y$ as follows:

$$F(s) = \{2, z\}$$
$$F(t) = \{t, 2 + t\} \quad \text{for each } t \in (0, 2).$$

It is easy to see that F is l.s.c. at each t in X. B is metrizable and according to Lemma 7.13 F is Hausdorff continuous.

But there is no continuous selection $f: X \to Y$ for F. If a continuous function $g: X \to Y$ were a selection for F then it would be defined by $g(t) = t$ for all $t \neq s$ or $g(t) = 2t$ for all $t \neq s$. Let us take the sequence $\{a_n\}_{n=1}^{\infty}$ defined by:

$$a_{2k} = 2 - \frac{1}{k}$$
$$a_{2k+1} = \frac{1}{k}, \quad k = 1, 2, 3, \ldots .$$

Then $\{a_n\}_{n=1}^{\infty}$ converges to s but the sequence $\{g(a_n)\}_{n=1}^{\infty}$ has two limit points.

The following theorem gives an answer to the Parthasarathy’s question:

Theorem 7.11. Let X be a topological space, let (Y, d) be a metric space. Let $F: X \rightharpoonup Y$ be a Hausdorff continuous multifunction such that for each $x \in X$ the set $F(x)$ is not a singleton. Suppose that there exists a uniformly continuous function $v: Y \to \mathbb{R}$ such that

(i) For each x in X the set $v(F(x))$ is bounded below.

(ii) For each x in X

$$\inf(|v(a) - v(b)|; \ a, b \in F(x) \text{ and } a \neq b) > 0 \quad \text{holds.}$$

Then F has a continuous selection.

Before proving Theorem 7.11 we need the following technical lemma.

Lemma 7.12. Let X be a topological space. Let (Y, d) be a metric space. Let $F: X \rightharpoonup Y$ be a Hausdorff continuous multifunction such that for each $x \in X$ the set $F(x)$ is not a singleton. Let $v: Y \to \mathbb{R}$ be a uniformly continuous function. If we define a function $c: X \to Y$ as follows:

$$c(x) = \inf(|v(a) - v(b)|; \ a, b \in F(x) \text{ and } a \neq b)$$

then the function c is continuous.
Proof. Let \(x \in X \). Let \(\epsilon > 0 \) be arbitrary. Using the uniform continuity of \(v \) we see that there exists \(r > 0 \) such that

\[
\forall a, b \in Y \text{ such that } d(a, b) < r \quad |v(a) - v(b)| < \frac{\epsilon}{4}
\]

holds.

Let \(U(x) \) be a neighbourhood of \(x \) such that

(i) for each \(t \) in \(U(x) \)

\[
H(F(t), F(x)) < r
\]

where \(H \) denotes the Hausdorff distance induced by \(d \).

Let \(t \in U(x) \).

(1) To prove \(c(t) < c(x) + \epsilon \) let \(z, s \in F(x) \) such that

(ii)

\[
||v(s) - v(z)|| - c(x) < \frac{\epsilon}{4}
\]

By (i) there exist \(z', s' \in F(t) \) such that

\[
d(z, z') < r \quad \text{and} \quad d(s, s') < r.
\]

Hence

(iii)

\[
||v(z') - v(s')|| - |v(z) - v(s)| < \frac{\epsilon}{2}
\]

holds.

Therefore by (ii) and (iii)

\[
|v(z') - v(s') - c(x)| < \epsilon, \quad \text{so} \quad |v(z') - v(s')| < c(x) + \epsilon
\]

and since \(c(t) < |v(z') - v(s')|, \) \(c(t) < c(x) + \epsilon \) holds.

(2) To prove \(c(x) < c(t) + \epsilon \) let \(p, q \) be elements of \(F(t) \) such that

\[
||v(p) - v(q)|| - c(t) < \frac{\epsilon}{4}
\]

By (i) there exist \(p', q' \) from \(F(x) \) such that

\[
d(p, p') < r \quad \text{and} \quad d(q, q') < r
\]

so

\[
|v(p) - v(p')| < \frac{\epsilon}{4}
\]

and

\[
|v(q) - v(q')| < \frac{\epsilon}{4}
\]

The rest of the proof of (2) is the same as in (1) and it is left to the reader. So we have \(\forall t \in U(x) : |c(x) - c(t)| < \epsilon \) and the proof is completed.

\[\square \]
Proof of Theorem 7.11. First let us define a function \(c : X \to \mathbb{R} \) as follows:

\[
 c(x) = \inf |v(a) - v(b)|; \quad a, b \in F(x) \text{ and } a \neq b.
\]

By Lemma 7.12 \(c \) is continuous and by (ii) \(c(x) > 0 \) for each \(x \) in \(X \). It is easy to verify, using (i) and (ii) that for each \(x \in X \) the set \(v(F(x)) \) has the least element and that there exists exactly one point \(y \in F(x) \) such that \(v(y) = \min v(F(x)) \).

Let us denote the minimizing element \(y \) as \(f(x) \). Then \(f \) is a function from \(X \) into \(Y \). Obviously \(f \) is a selection for \(F \). We will prove that \(f \) is continuous.

To prove this let \(x \in X \) and \(\epsilon > 0 \). We will show that there is an open set \(U(x) \) in \(X \) such that \(x \in U(x) \) and for each \(t \in U(x) \) \(d(f(t), f(x)) < \epsilon \) holds.

First take \(r > 0 \) such that \(c(x) > r \).

Next let \(h > 0 \) be such that

\[
 h < \epsilon \quad \text{and for all } s, z \in Y \text{ such that } d(s, z) < h \text{ the inequality } |v(s) - v(z)| < r
\]

holds.

Since the function \(c \) is continuous at \(x \) and \(F \) is Hausdorff continuous at \(x \) there exists an open neighbourhood \(O(x) \) of \(x \) such that

(a) for each \(t \in O(x) \) \(c(t) > r \) and

(b) for each \(t \in O(x) \) \(H(F(x), F(t)) < h \) hold.

Suppose that, contrary to what we wish to prove,

(c) There exists \(s \in O(x) \) such that \(d(f(s), f(x)) \geq \epsilon \)

Using (b) and the fact that \(f \) is a selection for \(F \) we obtain

(b1) There exists \(m \in F(s) \) such that \(d(f(x), m) < h \)

(b2) There exists \(n \in F(x) \) such that \(d(f(s), n) < h \)

It follows from (c) that \(m \neq f(s) \) and \(n \neq f(x) \). Now using (v) it follows that

(v1) \[|v(m) - v(f(x))| < r \]

(v2) \[|v(n) - v(f(s))| < r. \]
7.2 Continuous selections from topological to metric spaces

It is clear now (using the definition of \(f \) and \(c \), (a) and the assumption (ii)) that

\[v(f(s)) + r < v(m) \]

and (v1) implies

\[v(f(s)) < v(f(x)). \]

Analogically \(v(f(x)) + r < v(n) \) holds and (v2) implies

\[v(f(x)) < v(f(s)). \]

This is a contradiction. Hence for each \(s \in O(x) \): \(d(f(s), f(x)) < \epsilon \) holds and the proof is completed. \(\square \)

The previous results can be improved in the case of multifunctions with exactly \(n \) values.

Lemma 7.13. Let \(X \) be a topological space. Let \(Y \) be a metric space. Let \(n > 0 \) be an integer. Let \(F : X \rightarrow Y \) be a l.s.c. multifunction with exactly \(n \) values for each \(x \in X \). Then \(F \) is Hausdorff continuous.

Proof. Let \(a \) be an arbitrary point of \(X \). Let \(\epsilon > 0 \) be arbitrary. Let us denote \(V = B_\epsilon(F(a)) \) and let \(F(a) = \{a_1, a_2, \ldots, a_n\} \). Hence

\[V = \bigcup_{i=1}^{n} B_\epsilon(\{a_i\}). \]

For \(i = 1, 2, \ldots, n \) there exists a neighbourhood \(U_i \) of \(a \) such that if \(t \) is in \(U_i \) then \(F(t) \cap B_\epsilon(\{a_i\}) \neq \emptyset \).

Denote \(U = \bigcap_{i=1}^{n} U_i \). Then if \(t \) is in \(U \)

\[F(t) \cap B_\epsilon(\{a_i\}) \neq \emptyset \quad \text{for } i = 1, 2, \ldots, n \]

holds and since \(F(t) \) has exactly \(n \) values we have

\[F(t) \subset B_\epsilon(F(a)). \]

By (1) \(F(a) \subset B_\epsilon(F(t)) \) holds. So if \(t \) is in \(U \) then

\[H(F(t), F(a)) < \epsilon. \]

\(\square \)

Lemma 7.14. Let \(X \) be a topological space. Let \(Y \) be a Hausdorff topological space. Let \(F : X \rightharpoonup Y \) be a l.s.c. multifunction and let \(f : X \rightarrow Y \) be a continuous function. Let for each \(x \in X \) the set \(F(x) \setminus \{f(x)\} \) be nonempty. Then the multifunction \(G : X \rightharpoonup Y \) defined by \(G(x) = F(x) \setminus \{f(x)\} \) is l.s.c.
Proof. Let \(x \) be a fixed point of \(X \). Let \(U \) be an open set in \(Y \) and let \(G(x) \cap U \neq \emptyset \).

First we see that there exists \(t \) in \(F(x) \) such that \(t \neq f(x), \ t \in U \). Since \(t \neq f(x) \) there exist two disjoint open sets \(W, V \) in \(Y \) such that \(t \in W \subset U \) and \(f(x) \in V \). Since \(F(x) \cap W \neq \emptyset \) there exists an open neighbourhood \(O_1 \) of \(x \) such that for each \(s \) in \(O_1 \) \(F(s) \cap W \neq \emptyset \). From continuity of \(f \) it follows that there is an open neighbourhood \(O_2 \) of \(x \) such that for each \(z \) in \(O_2 \) \(f(z) \in V \). Denote \(O = O_1 \cap O_2 \). Then for each \(s \) in \(O \): \(F(s) \cap W \neq \emptyset \) and \(f(s) \in W \) therefore

\[
x \in O \subset G^+(W) \subset G^-(U).
\]

Hence \(G^-(U) \) is a neighbourhood of \(x \). \(\square \)

THEOREM 7.15. Let \(n > 0 \) be an integer. Let \(X \) be a topological space. Let \((Y, d) \) be a metric space. Let \(F : X \rightharpoonup Y \) be a l.s.c. multifunction with exactly \(n \) values for each \(x \in X \). Let

\((v) \) there exists a uniformly continuous function \(v : Y \to \mathbb{R} \) such that for each \(x \) in \(X \) the set \(v(F(x)) \) has exactly \(n \) elements (so \(v \) is one-to-one on \(F(x) \) holds).

Then there exist continuous functions \(f_i : X \to Y \) for \(i = 1, 2, \ldots, n \) such that for each \(x \in X \)

\[
F(x) = \{f_1(x), f_2(x), \ldots, f_n(x)\}
\]

holds.

Proof.

(1) If \(n = 1 \) then Theorem 7.15 is true.

(2) Let \(n > 0 \) be an integer and let us suppose that Theorem 7.15 is valid for each integer \(k: 0 < k < n \). By Lemma 7.13 the multifunction \(F \) is Hausdorff continuous and the conditions of Theorem 7.11 are fulfilled. Therefore there exists a continuous selection for \(F \). Let us denote this selection by \(f_1 \). Let us define a multifunction \(G : X \rightharpoonup Y \) as follows:

\[
G(x) = F(x) \setminus \{f_1(x)\}
\]

for each \(x \in X \). By Lemma 7.14 the multifunction \(G \) is l.s.c. and we can see that it has exactly \(n - 1 \) values. Since \(G(x) \subset F(x) \) for each \(x \in X \) the condition \((v) \) of Theorem 7.15 is fulfilled for \(G \). Hence, since Theorem 7.15 is valid for a multifunction with \(n - 1 \) values, there exist \(n - 1 \) continuous functions \(f_2, f_3, \ldots, f_n \) from \(X \) into \(Y \) such that for each \(x \in X \)

\[
G(x) = \{f_2(x), f_3(x), \ldots, f_n(x)\}
\]

holds. Therefore for each \(x \in X \)

\[
F(x) = \{f_1(x)\} \cup G(x) = \{f_1(x), f_2(x), \ldots, f_n(x)\}.
\]

\(\square \)
7.3 Continuous selections for Lipschitz multifunctions

As we have already seen, in general, there is no guarantee that a "nice" multifunction will have a continuous selection. As we show later in this chapter, even closed-valued continuous multifunctions defined on a compact interval and with values in \(\mathbb{R} \) need not have a continuous selection. But in this section we show that if such a multifunction is locally Lipschitz, it does have a continuous selection.

Definition 7.16. If \(K \) is a positive real number, and \((X,d),(Y,\rho)\) are metric spaces, we say that a multifunction \(F \) from \(X \) to \(Y \) is \(K \)-Lipschitz if for every \(x_1, x_2 \) from \(X \) the inequality

\[
H_\rho(F(x_1), F(x_2)) \leq Kd(x_1, x_2)
\]

is true. (By \(H_\rho \) we denote a Hausdorff metric on \(2^Y \setminus \{\emptyset\} \) derived in a natural way from \(\rho \).)

In what follows we will use the following technical lemmas:

Lemma 7.17. Let \(Y \) be a Banach space over \(\mathbb{R} \). Let \(a \in \mathbb{R} \), let \(m \) be a positive real number. Let \(I = [a,a+m] (I = [a-m,a]) \subset \mathbb{R} \). Let \(F : I \rightarrow Y \) be a \(K \)-Lipschitz multifunction. Let \(r > 0 \), \(r < K \). Let \(b \in F(a) \). Then there exists an \(M \)-Lipschitz function \(f : I \rightarrow Y \) such that \(M = (K + r) \), \(f(a) = b \) and for each \(x \) in \(I \)

\[
d(f(x), F(x)) = \inf\{d(f(x), t) \mid t \in F(x)\} < r.
\]

Moreover, \(f(I) \subseteq B(b, 2Km) \) holds.

Proof. Let us consider the case \(I = [a,a+m] \). The case \(I = [a-m,a] \) is symmetrical.

Let \(n \in \mathbb{N} \) be such that

\[
K \frac{m}{n} < \frac{r}{6} \quad \text{and} \quad \frac{m}{n} < \frac{1}{3}.
\]

Let us define

\[
x_i = a + \frac{m}{n} \quad \text{for} \quad i = 0, 1, 2, \ldots, n.
\]

Denote \(b = y_0 \). Since \(F \) is \(K \)-Lipschitz, there exists a point \(y_1 \in F(x_1) \) such that

\[
d(y_0, y_1) \leq H(F(x_0), F(x_1)) + \frac{rm}{2n} \leq Kd(x_0, x_1) + \frac{rm}{2n} \leq K \frac{m}{n} + \frac{rm}{2n} \leq \left(K + \frac{r}{2} \right) \frac{m}{n}.
\]

By final induction we can find a set \(\{y_0, y_1, \ldots, y_n\} \) such that \(\forall i = 0, 1, 2, \ldots, n, y_i \in F(x_i) \) and

\[
d(y_i, y_{i+1}) \leq \left(K + \frac{r}{2} \right) \frac{m}{n} \quad \text{for} \quad i \leq n - 1.
\]

Let us define a continuous function \(f : [a,a+m] \rightarrow Y \) in this way: \(f(x_i) = y_i, i = 0, 1, 2, \ldots, n \)

\[
f(x) = \frac{1}{m} \left[n(x - x_i)y_{i+1} + n(x_{i+1} - x)y_i \right] \quad \text{if} \quad x \in (x_i, x_{i+1}).
\]

We will prove that \(f \) is \(\left(K + \frac{r}{2} \right) \)-Lipschitz on \([a,a+m]\).
Let $x, x' \in [x_i, x_{i+1}]$, for some $i \in \{0, 1, \ldots, n\}$, $x < x'$. We obtain
\[
d(f(x), f(x')) = \frac{1}{m} \left| n(x' - x_i)y_{i+1} + n(x_{i+1} - x')y_i - n(x-x_i)y_{i+1} - n(x_{i+1} - x)y_i \right| \\
= \frac{n}{m} \left| (x' - x)y_{i+1} - (x - x')y_i \right| \leq \frac{n}{m} |x' - x| \cdot ||y_{i+1} - y_i|| \\
\leq \frac{n}{m} |x' - x| \left(K + \frac{r}{2} \right) \frac{m}{n} \leq \left(K + \frac{r}{2} \right) |x' - x| .
\]

(ii) In general, if $x < x_i < x_{i+1} \ldots, x_{i+k} < x'$ for some $i, k \in \{0, 1, \ldots, n\}$, $i+k < n$ then, because of (i)
\[
d(f(x), f(x')) \\
\leq d(f(x), f(x_i)) + d(f(x_i), f(x_{i+1})) + \ldots + d(f(x_{i+k-1}), f(x_{i+k})) + d(f(x_{i+k}), f(x')) \\
\leq \left(K + \frac{r}{2} \right) |x_i - x| + \left(K + \frac{r}{2} \right) |x_{i+1} - x_i| + \ldots + \left(K + \frac{r}{2} \right) |x' - x_{i+k}| \\
= \left(K + \frac{r}{2} \right) |x' - x| .
\]
Now, let $x \in [a, a+m]$, then $x \in [x_i, x_{i+1}]$ for some $i \in \{0, 1, \ldots, n\}$. So
\[
d(f(x), F(x)) = \inf \{d(f(x), t) \mid t \in F(x)\} \\
= \inf \left\{ \left\| \frac{n}{m} (x - x_i)y_{i+1} + \frac{n}{m} (x_{i+1} - x)y_i - t \right\| \mid t \in F(x) \right\}
\]
Since F is K-Lipschitz there exists a point p from $F(x)$ such that $d(p, y_{i+1}) \leq \left(K + \frac{r}{2} \right) (x_{i+1} - x)$ therefore
\[
d(f(x), p) \leq d(f(x), y_i) + d(y_i, y_{i+1}) + d(y_{i+1}, p) \\
\leq \left(K + \frac{r}{2} \right) (x - x_i) + \left(K + \frac{r}{2} \right) \frac{m}{n} + \left(K + \frac{r}{2} \right) (x_{i+1} - x) \\
\leq \left(K + \frac{r}{2} \right) (x_{i+1} - x_i) + \left(K + \frac{r}{2} \right) \frac{m}{n} \leq 2 \left(K + \frac{r}{2} \right) \frac{m}{n} \leq 2 \frac{r}{6} + \frac{r}{n} < r
\]
so $d(f(x), F(x)) < r$ for each x from $[a, a+m]$. Now, since $f(a) = b$ and f is a $(K+r)$-Lipschitz function, for r such that $r < K$ and for each x from $[a, a+m]$ we have
\[
d(b, f(x)) = d(f(a), f(x)) \leq (K + r)|x - a| \leq 2K|a + m - a| \leq 2Km
\]
so $f([a, a+m]) \subseteq B(b, 2Km)$.

\textbf{Lemma 7.18.} Let B be a finitely dimensional Banach space. Let $a \in \mathbb{R}$, let l be a positive real number. Let $I = [a, a+l] \setminus ([a-l, a])$. Let $F : I \rightarrow B$ be a K-Lipschitz multifunction with closed values. Then F has a K-Lipschitz selection on I.

113
Proof. We will prove the Theorem only for the case \(I = [a, a + l] \). According to Lemma 7.12 there exists a sequence \(\{f_i\}_{i=1}^{\infty} \) of functions \(f_i : [a, a + l] \to B \) such that for each index \(i \) from \(\mathbb{N} \) and each \(x \) from \([a, a + l] \) \(d(f_i(x), F(x)) < \frac{1}{i} \) is true. Moreover, each function \(f_i \) is \((K + \frac{1}{i}) \)-Lipschitz and

\[
f_i([a, a + l]) \subset B(b, 2KI).
\]

This implies that for every \(x \) from \(X \) the set \(\{f_i(x) \mid i = 1, 2, \ldots \} \) is precompact. Since \(B \) is finitely dimensional, according to Arzela-Ascoli theorem the set

\[
M = \{f_i \mid i \in 1, 2, \ldots \}
\]

is precompact. So there exists a continuous function \(f : [a, a + l] \to B \) such that \(f \) is a uniform limit of a sequence \(\{f_i\}_{i=1}^{\infty} \) (a subsequence of \(\{f_i\}_{i=1}^{\infty} \)) of functions from \(M \).

Let us consider an \(\epsilon > 0 \). As we have proved above there exists an index \(k \) such that \(f_j \) is \((K + \epsilon) \)-Lipschitz for each \(j \geq k \). That means that the function \(f \) is also \((K + \epsilon) \)-Lipschitz. \(f \) is proved to be \(K \)-Lipschitz.

Now it is simple to realize that \(f \) is a selection of \(F \). For each \(\epsilon > 0 \) there exists an index \(m \) such that for each \(x \) from \(X \)

\[
d(f_m(x), F(x)) < \epsilon \quad \text{and} \quad \sup_{x \in [a, a+l]} |f_m(x) - f(x)| < \epsilon.
\]

So for every \(x \) from \(X \) \(d(f(x), F(x)) < 2\epsilon \). Since \(\epsilon \) was an arbitrary positive real number, for each \(x \) from \(X \) \(d(f(x), F(x)) = 0 \) is true. \(F \) has closed values so \(f \) is a selection of \(F \). \(\square \)

Now we are prepared to prove our first theorem concerning Lipschitz multifunctions.

Theorem 7.19. Let \(B \) be a finitely dimensional Banach space over \(\mathbb{R} \). Let \(F : \mathbb{R} \rightharpoonup B \) be a \(K \)-Lipschitz multifunction with closed values. Then \(F \) has a \(K \)-Lipschitz selection on \(\mathbb{R} \).

Proof. This is a simple consequence of Theorem 7.11 so we will only give an outline of the proof. Let \(b \) be an element of the set \(F(0) \). Using Theorem 7.11, we can define by induction \(K \)-Lipschitz selections \(f_1, f_2, \ldots, f_{2i}, f_{2i+1}, \ldots \) of \(F \) such that for each nonnegative integer \(i \) the function \(f_{2i} \) (\(f_{2i+1} \)) is defined on \([2i, 2i+2)\) \((-2i-2, -2i)\) and \(f_{2i}(2i+2) = f_{2i+1}(2i+2) \) \((f_{2i+1}(-2i-2) = f_{2i+1}(-2i-2))\) and such that \(f_i(0) = f_2(0) = b \). It is easy to see that a function \(f : \mathbb{R} \to B \) defined by \(f(x) = f_{2i}(x) \) if \(x \in [2i, 2i+2] \) and \(f(x) = f_{2i+1}(x) \) if \(x \in [-2i-2, -2i] \) is correctly defined and it is a \(K \)-Lipschitz selection of \(F \). \(\square \)

The above theorem is true for certain multifunctions with non-convex and non-compact values. It is a generalization of the following result obtained by Guričan and Kostyrko in [16] in 1985:

Corollary 7.20. Let \(n \) be a positive integer, let \(B = \mathbb{R}^n \). Let \(F : \mathbb{R} \rightharpoonup B \) be a \(K \)-Lipschitz multifunction with convex compact (and non-void) values. Then \(F \) has a \(K \)-Lipschitz selection on \(\mathbb{R} \).
In the following lemma we shall use the following assumption concerning a multifunction \(F \) from \(\mathbb{R} \) to a Banach space \(B \):

Assumption LFD. For every \(x \) from \(\mathbb{R} \) there exists an open neighbourhood \(O(x) \subset \mathbb{R} \) and a finitely dimensional set \(B_x \subset B \) such that \(F(O(x)) \subset B_x \).

We say that a multifunction \(F : \mathbb{R} \rightarrow B \) is **locally Lipschitz** if for every real \(x \) there exists an open interval \(U_x \) and a positive real constant \(K_x \) such that \(x \in U_x \) and \(F \) is \(K_x \)-Lipschitz on \(U_x \).

Lemma 7.21. Let \(B \) be a Banach space. Let \(F : \mathbb{R} \rightarrow B \) be a locally Lipschitz multifunction with closed values. Let \(F \) satisfy the assumption LFD. Let \(a, b \in \mathbb{R} \) and \(b \in F(a) \). Then for every real \(c, d, c < d \) satisfying \(c \leq a \leq d \) there exists a Lipschitz selection \(f : [c, d] \rightarrow B \) of \(F \) such that \(f(a) = b \).

Proof. It suffices to show that \(F \) is Lipschitz on \([c, d]\) and that there exists a finitely dimensional subset \(Z \) of \(B \) such that \(F([c, d]) \subset Z \). After that we can apply Theorem 7.11.

We proceed by a usual "locally on compact implies globally on compact" procedure. Obviously for every \(x \) from \([c, d]\) there exists an open interval \(U_x \), a positive real number \(K_x \) and a finitely dimensional subset \(B_x \) of \(B \) such that \(x \in U_x \), \(F(U_x) \subset B_x \) and \(F \) is \(K_x \)-Lipschitz on \(U_x \).

Consider the following open cover \(C \) of \([c, d]\):

\[
C = \{ U_x \mid x \in [c, d] \}.
\]

There exists a finite subcover \(S \) of \(C \) and a positive integer \(n \) such that

\[
S = \{ U_{x_1}, U_{x_2}, \ldots, U_{x_n} \}.
\]

Let us denote

\[
M = \max\{K_{x_1}, K_{x_2}, \ldots, K_{x_n}\}.
\]

Then \(F \) is \(M \)-Lipschitz on each interval \(U_{x_i} \) for \(i \in \{1, 2, \ldots, n\} \). The fact \([c, d] \subset U := \bigcup_{i=1}^{n} U_{x_i}\) implies \(F \) is \(M \)-Lipschitz on \([c, d]\).

Moreover,

\[
F([c, d]) \subset F(U) \subset Z := \bigcup_{i=1}^{n} B_{x_i},
\]

and we can see that \(Z \) is finitely dimensional.

If \(c < a < d \) Theorem 7.11 implies \(F \) has an \(M \)-Lipschitz selection \(h (g) \) on \([c, a] \) ([\(a, d]\)) such that \(g(a) = h(a) = b \). So if \(c < a < d \) the function \(f : [c, d] \rightarrow B \) defined by \(f(x) = g(x) \) on \([c, a]\) and \(f(x) = h(x) \) on \([a, d]\) is a Lipschitz selection of \(F \) on \([c, d]\). The proof for the case \(a = c, a = d \) is even easier. \(\square \)

Now we are prepared to formulate and prove the main theorem of this section.
Theorem 7.22. Let B be a Banach space over \mathbb{R}. Let $F : \mathbb{R} \rightrightarrows B$ be a locally Lipschitz multifunction with closed values. Let F satisfy the assumption LFD. Let $a \in \mathbb{R}$ and $b \in F(a)$. Then F has a continuous selection f on \mathbb{R} such that $f(a) = b$.

To realize that the assumptions of our final result, Theorem 7.22, can hardly be weakened, compare the following three assertions:

1. There exists a finitely valued Lipschitz multifunction from a unit circle into \mathbb{R}^2 that has no continuous selection. (In fact Example 7.10 can illustrate this situation. Of course, each multifunction with values in \mathbb{R}^2 or \mathbb{R} automatically satisfies the assumption LFD.)

2. There exists a Hausdorff continuous multifunction from the compact interval $[-1, 0]$ to \mathbb{R} with closed values, which is locally Lipschitz in every point of $[-1, 0)$ and has no continuous selection. (See Example 7.23.)

3. Each locally Lipschitz multifunction with closed values from \mathbb{R} to a Banach space, satisfying the assumption LFD has a continuous selection. This is what our Theorem 7.22 claims.

Before presenting the proof of Theorem 7.22 let us examine the following example, which is a construction of a Hausdorff continuous multifunction $S : [-1, 0] \rightrightarrows \mathbb{R}$ with closed values, which is locally Lipschitz on $[-1, 0)$ and has no continuous selection. We will use this example also in the section 7.4.

Example 7.23. Let $S : [-1, 0] \rightrightarrows \mathbb{R}$ be defined as follows:

$$S(0) = \mathbb{R},$$

$$S(x) = \left\{ \frac{n(n+1)}{2} x + \frac{k}{2^n} \mid k \in \mathbb{Z} \right\} \cup \left\{ \frac{n(n+1)}{2^{n+1}} x + \frac{n+1}{2^{n+1}} + \frac{k}{2^n} \mid k \in \mathbb{Z} \right\}$$

for every positive integer n and every $x \in \left[-\frac{1}{n}, -\frac{1}{n+1} \right]$. In other words: the intersection of the graph of S with the set $\left[-\frac{1}{n}, -\frac{1}{n+1} \right] \times \mathbb{R}$ is the system of segments joining the following couples of points: the point $\left[-\frac{1}{n}, \frac{m}{2^n} \right]$ with the point $\left[-\frac{1}{n+1}, \frac{m}{2^n} + \frac{1}{2} \right]$ and $\left[-\frac{1}{n}, \frac{m}{2^n} \right]$ with the point $\left[-\frac{1}{n+1}, \frac{m}{2^n} + \frac{1}{2} + \frac{1}{2^{n+1}} \right]$ where m is an arbitrary integer.

Of course, S is Hausdorff continuous on $[-1, 0)$; so, it is l.s.c. on this set. Now, it suffices to show that S is Hausdorff continuous in 0. But it is easy to see that for every $t \in \left[-\frac{1}{n}, 0 \right)$ the following holds: if $s \in S(t)$ then $s + \frac{k}{2^n} \in S(t)$ for every integer k, so

$$H(S(t), \mathbb{R}) \leq \frac{1}{2^n},$$

where H denotes the Hausdorff metric defined on $2^\mathbb{R}$.

To show that S is locally Lipschitz on $[-1, 0)$ it is sufficient to show that it is $n(n+1)$-Lipschitz on
$I_n = \left[-\frac{1}{n}, -\frac{1}{n+1} \right]$ for every $n \in \mathbb{N}$, $n > 0$.

Let $x_1, x_2 \in I_n$. Let $y_1 \in S(x_1)$. Then there exists an integer k such that

$$y_1 = \frac{n(n+1)}{2} x_1 + \frac{k}{2^n} \quad \text{or} \quad y_1 = n(n+1) \frac{2^n+1}{2^{n+1}} x_1 + \frac{n+1}{2^{n+1}} + \frac{k}{2^n}.$$

There exists also y_2 from $S(x_2)$ such that

$$y_2 = \frac{n(n+1)}{2} x_2 + \frac{k}{2^n} \quad \text{or} \quad y_2 = n(n+1) \frac{2^n+1}{2^{n+1}} x_2 + \frac{n+1}{2^{n+1}} + \frac{k}{2^n}$$

so $|y_1 - y_2|$ equals

$$\frac{n(n+1)}{2} |x_1 - x_2| \quad \text{or} \quad \frac{n(n+1)(2^n+1)}{2^{n+1}} |x_1 - x_2|.$$

In both cases we have

$$|y_1 - y_2| \leq K_n |x_1 - x_2|, \quad \text{where} \quad K_n = n(n+1). \tag{7.7}$$

In the same way we can pick a point y_2 from $S(x_2)$ first and find a point y_1 from $S(x_1)$ such that the inequality (7.7) is true.

This means that for each x_1, x_2 from I_n

$$H(S(x_1), S(x_2)) \leq K_n |x_1 - x_2|$$

is true. We have proved that S is locally Lipschitz on $[-1, 0]$.

It is easy to see that S has no continuous selection on $[-1, 0]$: every continuous selection f of S defined on the interval $[-1, 0]$ has the property

$$\lim_{t \to 0^+} f(t) = +\infty.$$

Now we will prove the main theorem of this section.

Proof of Theorem 7.22. For $n = 1, 2, 3 \ldots$ denote $I_n \in [-n, n]$. In what follows we will proceed by induction. Let us suppose, without loss of generality, that $a = 0$.

1. According to Lemma 7.13 there exists a Lipschitz selection $f_1 : T_1 \to B$ of F on the interval I_1 such that $f(a) = b$. Let us denote $f_1(-1) = b_1$ and $f_1(1) = c_1$.

2. Suppose that for $n \in \mathbb{N}$, $n = 1, 2, \ldots k$ there exist Lipschitz selections f_n of F on I_n such that if $l, m \in \{1, 2, \ldots k\}$, $l > m$ then $f_l(x) = f_m(x)$ for each x from I_m.

For each of the n considered let us denote $f_n(-n) = b_n$ and $f_n(n) = c_n$.

Since $b_k \in F(-k)$ there exists a Lipschitz selection g_k of F on $[-k - 1, -k]$ such that $g_k(-k) = b_k$.

117
Since $c_k \in F(k)$ there exists a Lipschitz selection h_k of F on $[k, k+1]$ such that $h_k(k) = c_k$.

Let us define a function f_k on I_k by

\[
\begin{align*}
 f_k(x) &= g_k(x) \quad \text{for } x \text{ from } [-k - 1, -k], \\
 f_k(x) &= f_{k-1}(x) \quad \text{for } x \text{ from } [-k, k], \\
 f_k(x) &= h_k(x) \quad \text{for } x \text{ from } [k, k + 1].
\end{align*}
\]

We have just constructed by induction a sequence of Lipschitz selections f_k of F on the intervals I_k such that if $k_1 < k_2$ then $f_{k_2}(x) = f_{k_1}(x)$ for all x from I_{k_1}. All functions f_k are continuous selections of F on their domains.

Let us define a function $f : \mathbb{R} \to B$ by

\[
\begin{align*}
 f(x) &= f_1(x) \quad \text{for } x \in [-1, 1], \\
 f(x) &= f_k(x) \quad \text{for } x \in [-k - 1, -k] \cup [k, k + 1], k = 1, 2, \ldots
\end{align*}
\]

The function f is a selection of F on \mathbb{R}. It is continuous because all functions f_k are continuous. □

7.4 Example

This section presents a very important example. It was published for the first time in 1996 in [23] and it shows that even a very nice multifunction need not have a continuous selection.

Example 7.24. Let us consider the multifunction S from Example 7.23. The multifunction S is not u.s.c. To see this, define a set

\[
U = \bigcup_{k \in \mathbb{Z}} \left(\frac{k}{2} - \frac{1}{2^{k+1}}, \frac{k}{2} + \frac{1}{2^{|k|}} \right).
\]

Then U is an open neighbourhood of the set $S(-1)$ and for every neighbourhood V of the point -1 there exists $t \in V$ such that $S(t)$ is not a subset of U. A problem of this kind will not appear when we make the set $\mathbb{R} - S(x)$ "sufficiently small", i.e., a subset of a compact interval.

Let $G : [-1, 0) \to \mathbb{R}$ be defined as follows:

\[
G(x) = \left(-\infty, \frac{1}{x} \right] \cup \left[-\frac{1}{x}, +\infty \right) \quad \text{for } x \in (-\infty, 0).
\]

Now, let us define $F : [-1, 0) \to \mathbb{R}$ as follows:

\[
\begin{align*}
 F(x) &= S(x) \cup G(x) \quad \text{for } x \in [-1, 0) \\
 F(0) &= S(0) = \mathbb{R}.
\end{align*}
\]

It is easy to verify that F is u.s.c. and Hausdorff continuous at the point 0.

Since both S and G are Hausdorff continuous on the set $[-1, 0)$, $F = S \cup G$ is Hausdorff continuous,
too. F is u.s.c. on $[-1, 0)$. For example let $x \in \left[-\frac{1}{n}, -\frac{1}{n+1} \right]$ and let W be an open neighbourhood of the set $F(x)$.

Let us denote

$$A = F(x) - \left((-\infty, -\frac{1}{x}) \cup \left(-\frac{1}{x}, +\infty \right) \right).$$

Let

$$A(\alpha) = \bigcup_{a \in A} (a - \alpha, a + \alpha) \quad \text{for} \quad \alpha > 0.$$

Then there exists an $\epsilon > 0$ such that the set

$$Z = (-\infty, \frac{1}{x} + \epsilon) \cup (-\frac{1}{x} - \epsilon, +\infty) \cup A(\epsilon)$$

is a subset of W. Let I be the set of such indices $k \in \mathbb{N}$, that there exists $t \in \left[-\frac{1}{n}, -\frac{1}{n+1} \right]$ for which the set

$$\left\{ \frac{n(n+1)}{2} t + \frac{k}{2^n}, n(n+1) \frac{2^n + 1}{2^{n+1}} t + \frac{k}{2^{n+1}} \right\} \cap [-n - 1, n + 1]$$

is nonempty.

Each of the functions

$$\frac{1}{x}, \frac{1}{x}, \frac{n(n+1)}{2} x + \frac{k}{2^n}, \text{ and } n(n+1) \frac{2^n + 1}{2^{n+1}} x + \frac{n + 1}{2^{n+1}} + \frac{k}{2^n} \quad (k \in I)$$

is uniformly continuous on the interval $[-\frac{1}{n}, -\frac{1}{n+1}]$. The set I is finite. So, considering the form of the set $F(x)$, it is easy to see that there exists an $\delta > 0$ (i.e. $\delta = \frac{\epsilon}{2(n+1)^2}$) such that for every $t \in \mathbb{R}$ satisfying $|t - x| < \delta$, $F(t) \subset Z \subset W$ holds.

So, F is Hausdorff continuous, l.s.c. and u.s.c. on the interval $[-1, 0]$. Of course, F has no continuous selection on $[-1, 0]$.

7.5 Selection Problems and Extension Problems

We say that a mapping $f : X \to Y$ from a set X into a set Y is an extension of a mapping $g : A \to Y$ from a subset $A \subset X$ into Y if the restriction $f|_A$ coincides with g. If X and Y are topological spaces, $A \subset X$ is a closed subset of X and g is a continuous function defined on A, we can define the following multifunction $F : X \rightharpoonup Y$:

$$F(x) = Y \quad \text{if} \quad x \not\in A,$$

$$F(x) = \{g(x)\} \quad \text{if} \quad x \in A.$$

We see immediately that g has a continuous extension on X if and only if F has a continuous selection $f : X \to Y$. In general, every extension problem is a partial case of a selection problem. So every selection theorem implies results concerning an extension problem.
Exercises

Exercise 1 Find a l.s.c. multifunction $F : \mathbb{R} \rightharpoonup \mathbb{R}$ that has no continuous selections.
Exercise 2 Find a u.s.c. multifunction $F : \mathbb{R} \rightharpoonup \mathbb{R}$ that has no continuous selections.
Exercise 3 Prove that a continuous multifunction $F : \mathbb{R} \rightharpoonup \mathbb{R}$ with compact values has a continuous selection.
Exercise 4 Do Exercises 1 and 2 again, this time F has to be a finite-valued multifunction.
Exercise 5 Define a continuous multifunction with exactly three values for each x, such that it has no continuous selection. (Hint: study Example 7.10)