Let us consider the function Fy : C — C:
z2#0: Fy(z) = e T, Fy(0) =0.

Let z =z + iy and Fy = Uy +iVy.
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Of course, for all z,y : 2% + y? > 0 functions Uy, V4 obey Cauchy-Riemann equations. Moreover,
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so there is finite partial derivative of Uy w.r.t.  at (0,0) and equals zero. Similarly,
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so there is finite partial derivative of Vj w.r.t. y at (0,0) and equals zero, and
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That means the real and imaginary parts of Fy obey Cauchy-Riemann equations everywhere in C.
On the other hand, for ¢t € R:

FyVit] = e =7 2% .

That means F} is unbounded in any neighborhood of 0 and therefore is not continuous at 0 and therefore is
not differentiable at 0.

We can check the same for the function
2#£0: Fi(z)=e =, F1(0)=0.

Of course, F} is differentiable at any point different from 0. Separating Fj into real and imaginary parts for
z # 0 we obtain
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It is easy to check that:
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e but partial derivatives of functions Uy, V; at (0,0) do not exist.

So it is not surprising that Fj is not differentiable at zero.
Homework: Verify the (non)differentiability vs. Cauchy-Riemann equations for the functions Fs, F3 (at

Z€ero).
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